Three-dimensional visualization of electron- and nuclear- density distributions in inorganic materials by MEM-based technology
نویسنده
چکیده
The analysis of observed structure factors estimated after Rietveld analysis by the maximum-entropy method (MEM) gives electron or nuclear densities in the unit cell. The resultant densities are, more or less, biased toward a structural model in the Rietveld analysis. To overcome such a problem, we devised a sophisticated technique named MEM-based pattern fitting (MPF). For this purpose, a pattern-fitting system, RIETAN-FP, and a MEM analysis programs, PRIMA or its successor called Dysnomia, were virtually integrated into a structurerefinement system, whereby the pattern calculated from structure factors obtained by MEM is fit to the whole observed pattern. The resulting observed structure factors are analyzed again by MEM. In this way, whole-pattern fitting and MEM analysis are alternately repeated until R factors in the former no longer decrease. MPF virtually represents the crystal structure by electron or nuclear densities. MPF is, therefore, very effective in visualizing positional, occupational, and orientational disorder, chemical bonding, and anharmonic thermal motion. New programs, MPF_multi and VESTA 3, used in MPF are briefly introduced, and two representative applications of MPF to inorganic materials containing highly disordered chemical species are demonstrated.
منابع مشابه
Self-Consistent Analysis of Barrier Characterization Effects on Quantum Well Laser Internal Performance
In this paper, a numerical study of barrier characterization effects on the high-temperature internal performance of an InGaAsP multi-quantum well laser is presented. The softwareused for this purpose self-consistently combines the three-dimensional simulation of carrier transports, self-heating, and optical waveguiding. The laser model calculates all relevant physical mechanisms, including the...
متن کاملInvestigating the Longitudinal Optical Conductivity in Three-Layer Graphene Systems with Composes Mono-Bi-Bi and Bi-Mono-Bi and Bi-Bi-Mono
The longitudinal optical conductivity is the most important property for graphene-baseddevices. So investigating this property for spatially separated few-layer graphene systems analytically and numerically is the main purpose of our study. Each layer can be mono- or bi-layer graphene. The density-density correlation function has been screened by the dielectric function using the random p...
متن کاملMono-Mono-Mono and Bi-Bi-Bi three-layer graphene systems’ optical conductivity
Investigating the longitudinal optical conductivity of graphene systems, which is the mostimportant property for opto-electronic devices, for three-layer graphene systems theoretically and numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation between layers has been denoted by d, selected to be about ten nanometers. The carrier densities i...
متن کاملAn Experimental Study of the Steel Cylinder Quenching in Water-based Nanofluids
In this study, some parameters such as quenching and boiling curves of a stainless steel cylindrical rod 80 mm long and having a diameter of 15 mm were experimentally obtained in saturate pure water and two nanofluids (SiO2 and TiO2) with 0.01 wt%. The cylinder was vertically lowered into the pool of saturated water and its temporal center temperature was measured by a the...
متن کاملTomographic Reconstruction of the Ionospheric Electron Density in term of Wavelets
Ionospheric tomography is a method to investigate the ionospheric electron density in two or three dimensions. In this study, the function-based tomographic technique has been used for regional reconstruction of a 3D tomographic model of the ionospheric electron density using the GPS measurements of the Iranian Permanent GPS Network. Two-dimensional Haar wavelets and empirical orthogonal functi...
متن کامل